Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations

Identifieur interne : 000275 ( PascalFrancis/Corpus ); précédent : 000274; suivant : 000276

Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations

Auteurs : G. P. Brasseur ; D. A. Hauglustaine ; S. Walters

Source :

RBID : Pascal:96-0324378

Descripteurs français

English descriptors

Abstract

A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of 222Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO3) and hydrogen peroxide (H2O2) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NOx episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NOx transported from eastern Asia (China, Japan). During high NOx episodes, the calculated NOx mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 101
A06       @2 D9
A08 01  1  ENG  @1 Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations
A11 01  1    @1 BRASSEUR (G. P.)
A11 02  1    @1 HAUGLUSTAINE (D. A.)
A11 03  1    @1 WALTERS (S.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @2 14795-14814 [19 p.]
A21       @1 1996
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000060090480370
A44       @0 0000 @1 © 1996 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 96-0324378
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of 222Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO3) and hydrogen peroxide (H2O2) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NOx episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NOx transported from eastern Asia (China, Japan). During high NOx episodes, the calculated NOx mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.
C02 01  X    @0 001E02D04
C03 01  X  FRE  @0 Troposphère @5 26
C03 01  X  ENG  @0 Troposphere @5 26
C03 01  X  SPA  @0 Troposfera @5 26
C03 02  X  FRE  @0 Atmosphère marine @5 27
C03 02  X  ENG  @0 Marine atmosphere @5 27
C03 02  X  GER  @0 Meeresatmosphaere @5 27
C03 02  X  SPA  @0 Atmósfera marina @5 27
C03 03  X  FRE  @0 Modèle chimique @5 28
C03 03  X  ENG  @0 Chemical model @5 28
C03 03  X  SPA  @0 Modelo químico @5 28
C03 04  X  FRE  @0 Modèle 3 dimensions @5 29
C03 04  X  ENG  @0 Three dimensional model @5 29
C03 04  X  SPA  @0 Modelo 3 dimensiones @5 29
C03 05  X  FRE  @0 Phénomène transport @5 30
C03 05  X  ENG  @0 Transport process @5 30
C03 05  X  GER  @0 Transporterscheinung @5 30
C03 05  X  SPA  @0 Fenómeno transporte @5 30
C03 06  X  FRE  @0 Composé chimique @5 31
C03 06  X  ENG  @0 Chemical compound @5 31
C03 06  X  SPA  @0 Compuesto químico @5 31
C03 07  X  FRE  @0 Concentration @5 32
C03 07  X  ENG  @0 Concentration @5 32
C03 07  X  SPA  @0 Concentración @5 32
C03 08  X  FRE  @0 Condition climatique @5 33
C03 08  X  ENG  @0 Climatic condition @5 33
C03 08  X  SPA  @0 Condición climática @5 33
C03 09  X  FRE  @0 Hawaï @2 NG @5 46
C03 09  X  ENG  @0 Hawaii @2 NG @5 46
C03 09  X  SPA  @0 Hawai @2 NG @5 46
C03 10  X  FRE  @0 Océan Pacifique Nord @2 NG @5 47
C03 10  X  ENG  @0 North Pacific @2 NG @5 47
C03 10  X  SPA  @0 Océano Pacífico Norte @2 NG @5 47
C03 11  3  FRE  @0 Modèle climat @5 84
C03 11  3  ENG  @0 Climate models @5 84
C07 01  X  FRE  @0 Polynésie @2 NG
C07 01  X  ENG  @0 Polynesia @2 NG
C07 01  X  SPA  @0 Polinesia @2 NG
C07 02  X  FRE  @0 Océanie @2 NG
C07 02  X  ENG  @0 Oceania @2 NG
C07 02  X  SPA  @0 Oceania @2 NG
C07 03  X  FRE  @0 Océan Pacifique @2 NG
C07 03  X  ENG  @0 Pacific Ocean @2 NG
C07 03  X  GER  @0 Pazifischer Ozean @2 NG
C07 03  X  SPA  @0 Océano Pacífico @2 NG
N21       @1 225

Format Inist (serveur)

NO : PASCAL 96-0324378 INIST
ET : Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations
AU : BRASSEUR (G. P.); HAUGLUSTAINE (D. A.); WALTERS (S.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 1996; Vol. 101; No. D9; 14795-14814 [19 p.]; Bibl. 1 p.3/4
LA : Anglais
EA : A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of 222Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO3) and hydrogen peroxide (H2O2) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NOx episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NOx transported from eastern Asia (China, Japan). During high NOx episodes, the calculated NOx mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.
CC : 001E02D04
FD : Troposphère; Atmosphère marine; Modèle chimique; Modèle 3 dimensions; Phénomène transport; Composé chimique; Concentration; Condition climatique; Hawaï; Océan Pacifique Nord; Modèle climat
FG : Polynésie; Océanie; Océan Pacifique
ED : Troposphere; Marine atmosphere; Chemical model; Three dimensional model; Transport process; Chemical compound; Concentration; Climatic condition; Hawaii; North Pacific; Climate models
EG : Polynesia; Oceania; Pacific Ocean
GD : Meeresatmosphaere; Transporterscheinung
SD : Troposfera; Atmósfera marina; Modelo químico; Modelo 3 dimensiones; Fenómeno transporte; Compuesto químico; Concentración; Condición climática; Hawai; Océano Pacífico Norte
LO : INIST-3144.354000060090480370
ID : 96-0324378

Links to Exploration step

Pascal:96-0324378

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations</title>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hauglustaine, D A" sort="Hauglustaine, D A" uniqKey="Hauglustaine D" first="D. A." last="Hauglustaine">D. A. Hauglustaine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">96-0324378</idno>
<date when="1996">1996</date>
<idno type="stanalyst">PASCAL 96-0324378 INIST</idno>
<idno type="RBID">Pascal:96-0324378</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000275</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations</title>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hauglustaine, D A" sort="Hauglustaine, D A" uniqKey="Hauglustaine D" first="D. A." last="Hauglustaine">D. A. Hauglustaine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="1996">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical compound</term>
<term>Chemical model</term>
<term>Climate models</term>
<term>Climatic condition</term>
<term>Concentration</term>
<term>Hawaii</term>
<term>Marine atmosphere</term>
<term>North Pacific</term>
<term>Three dimensional model</term>
<term>Transport process</term>
<term>Troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Atmosphère marine</term>
<term>Modèle chimique</term>
<term>Modèle 3 dimensions</term>
<term>Phénomène transport</term>
<term>Composé chimique</term>
<term>Concentration</term>
<term>Condition climatique</term>
<term>Hawaï</term>
<term>Océan Pacifique Nord</term>
<term>Modèle climat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of
<sup>222</sup>
Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO
<sub>3</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NO
<sub>x</sub>
episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NO
<sub>x</sub>
transported from eastern Asia (China, Japan). During high NO
<sub>x</sub>
episodes, the calculated NO
<sub>x</sub>
mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>101</s2>
</fA05>
<fA06>
<s2>D9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRASSEUR (G. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAUGLUSTAINE (D. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALTERS (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>14795-14814 [19 p.]</s2>
</fA20>
<fA21>
<s1>1996</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000060090480370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1996 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>96-0324378</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of
<sup>222</sup>
Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO
<sub>3</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NO
<sub>x</sub>
episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NO
<sub>x</sub>
transported from eastern Asia (China, Japan). During high NO
<sub>x</sub>
episodes, the calculated NO
<sub>x</sub>
mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Atmosphère marine</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Marine atmosphere</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Meeresatmosphaere</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Atmósfera marina</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Transporterscheinung</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé chimique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chemical compound</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto químico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Concentration</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Concentration</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Concentración</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Condition climatique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Climatic condition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Condición climática</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Hawaï</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Hawaii</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Hawai</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Océan Pacifique Nord</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>North Pacific</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Océano Pacífico Norte</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>84</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>84</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Polynésie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Polynesia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Polinesia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Océanie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Oceania</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Oceania</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Océan Pacifique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Pacific Ocean</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="GER">
<s0>Pazifischer Ozean</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Océano Pacífico</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>225</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 96-0324378 INIST</NO>
<ET>Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations</ET>
<AU>BRASSEUR (G. P.); HAUGLUSTAINE (D. A.); WALTERS (S.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 1996; Vol. 101; No. D9; 14795-14814 [19 p.]; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>A global three-dimensional chemical transport model, called MOZART (Model of OZone And Related species in the Troposphere), is used to compare calculated abundances of chemical species and their seasonal evolution in the remote Pacific troposphere near Hawaii with values observed during the Mauna Loa Observatory Photochemistry Experiments (MLOPEX 1 and 2). MOZART is a fully diurnal model which calculates the time evolution of about 30 chemical species from the surface to the upper stratosphere. It accounts for surface emissions of source gases, wet and dry depositions, photochemical transformations and transport processes. The dynamical variables are provided by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) at T42 resolution (2.8°×2.8°) and 18 levels in the vertical. Simulated abundances of
<sup>222</sup>
Rn reveal an underestimate of the transport of continental emissions to the remote Pacific troposphere, more particularly during winter and summer. Calculated concentrations of chemical species are generally in fair agreement with observations. However, the abundances of soluble species are overestimated, leading, for example, to concentrations of nitric acid (HNO
<sub>3</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) which are overpredicted by a factor of 3-8, depending on the season. This feature is attributed to insufficient washout by clouds and precipitation in the model. MOZART succesfully reproduces the development of high-NO
<sub>x</sub>
episodes at Mauna Loa Observatory (MLO) associated with anticyclonic conditions to the north of Hawaii and breakdown of the polar jet which tends to deflect to the central Pacific the flow of NO
<sub>x</sub>
transported from eastern Asia (China, Japan). During high NO
<sub>x</sub>
episodes, the calculated NO
<sub>x</sub>
mixing ratio in the vicinity of the MLO increases by about a factor of 3 over its background level (reaching 90-100 pptv) within 3-5 days.</EA>
<CC>001E02D04</CC>
<FD>Troposphère; Atmosphère marine; Modèle chimique; Modèle 3 dimensions; Phénomène transport; Composé chimique; Concentration; Condition climatique; Hawaï; Océan Pacifique Nord; Modèle climat</FD>
<FG>Polynésie; Océanie; Océan Pacifique</FG>
<ED>Troposphere; Marine atmosphere; Chemical model; Three dimensional model; Transport process; Chemical compound; Concentration; Climatic condition; Hawaii; North Pacific; Climate models</ED>
<EG>Polynesia; Oceania; Pacific Ocean</EG>
<GD>Meeresatmosphaere; Transporterscheinung</GD>
<SD>Troposfera; Atmósfera marina; Modelo químico; Modelo 3 dimensiones; Fenómeno transporte; Compuesto químico; Concentración; Condición climática; Hawai; Océano Pacífico Norte</SD>
<LO>INIST-3144.354000060090480370</LO>
<ID>96-0324378</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000275 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000275 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:96-0324378
   |texte=   Chemical compounds in the remote Pacific troposphere : Comparison between MLOPEX measurements and chemical transport model calculations
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023